数学寒假学习计划

时间:2024-02-18 20:15:27
数学寒假学习计划汇编七篇

数学寒假学习计划汇编七篇

时间就如同白驹过隙般的流逝,我们的工作同时也在不断更新迭代中,是时候抽出时间写写计划了。那么计划怎么拟定才能发挥它最大的作用呢?下面是小编为大家整理的数学寒假学习计划7篇,欢迎大家借鉴与参考,希望对大家有所帮助。

数学寒假学习计划 篇1

首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

第一阶段复习计划:

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

第二阶段复习计划:

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

第三阶段复习计划:

复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

3.掌握用洛必达法则求未定式极限的方法。

4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

第四阶段复习计划

复习高数书上册第四章 第1-3节。需达到以下目标:

1.理解原函数的概念,理解不定积分的概念。

2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

第五阶段复习计划

复习高数书上册第五章第1-3节。达到以下目标:

1.理解定积分的几何意义。

2.掌握定积分的性质及定积分中值定理。

3.掌握定积分换元积分法与定积分广义换元法。

本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

第六阶段复习计划

复习高数书上册第五章第4节,第六章第2节。达到以下目标:

1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学寒假学习计划 篇2

寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。

首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学的复习内容。

一、 第一阶段复习计划:

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

……此处隐藏3223个字……分钟左右。

2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

数学寒假学习计划 篇6

1 第一阶段复习计划:

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

2第二阶段复习计划:

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

3 第三阶段复习计划:

复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

3.掌握用洛必达法则求未定式极限的方法.

4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

4 第四阶段复习计划

复习高数书上册第四章 第1-3节。需达到以下目标:

1.理解原函数的概念,理解不定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

5 第五阶段复习计划

复习高数书上册第五章第1-3节。达到以下目标:

1.理解定积分的几何意义。

2.掌握定积分的性质及定积分中值定理。

3.掌握定积分换元积分法与定积分广义换元法.

本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

6 第六阶段复习计划

复习高数书上册第五章第4节,第六章第2节。达到以下目标:

1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

数学寒假学习计划 篇7

知识与技能

1、掌握三位数除以一位数的笔算方法,并能正确计算;了解24时计时法;能笔算两位数乘两位数的乘法;能认、读、写小数,会计算一位小数的加减法。能认、读、写分数,会比较两个分数的大小,能计算同分母分数的加减法。

2、初步感知旋转、平移现象,能在方格纸上画出一个简单图形平移后的图形;在实践活动当中,体会长度单位千米和毫米的含义,知道1千米=1000米,1厘米=10毫米,会进行简单的单位换算;认识面积的含义,能用自选的单位估计和测量图形的面积,认识面积单位,会进行简单的单位换算;掌握长方形、正方形的面积公式。

3、对数据的收集、整理、描述和分析过程有所体验,了解“平均数”的意义,会求简单数据的平均数(结果为整数)。

情感与态度

1、学生在老师的指导下,能从日常的生活中发现并提出简单的数学问题,有主动探究学习的愿望。

2、学会与人合作,并且体会与他人合作的重要性。

3、使学生经历观察、操作、归纳的数学活动的过程,了解同一问题可有不同的解决方法,并感受到数学思考过程的合理性。

4、形成良好的学习习惯。

预习重点、难点:

1、了解长方形、正方形的一些特征,认识面积的含义,能用自选的单位估计和测量图形的面积,掌握长方形、正方形的面积公式。

2、掌握三位数除以一位数的笔算方法,并能正确计算;能笔算两位数乘两位数的乘法;。

3、对数据的收集、整理、描述和分析过程有所体验,了解“平均数”的意义,会求简单数据的平均数(结果为整数)。

《数学寒假学习计划汇编七篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式